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Motivation
Freshwater resources are limited, and the

majority of these limited resources (~68%) are
locked in glaciers and icecaps, making them
inaccessible to humankind. Groundwater accounts
for 30% of freshwater resources; more than 2 billion
people globally and 155 million people in the United
States (50% the population) rely on groundwater for
their primary source of drinking water (Alley et al.,
2002). The demand for water is increasing, yet the
water supply is decreasing because of the growing
population and its consumption practices. For
example, the Ogallala Aquifer – the largest aquifer,
spanning eight states in the United States – is
rapidly depleting and the recharge is slow. In fact,
the part of the Ogallala Aquifer located in Kansas
has already been used up by 30%, and another
40% will be consumed in next few decades with the
current rate of pumping. Moreover, water resources
are under extreme duress due to climate change
and emerging contaminants. Therefore, protecting
the world’s freshwater resources requires
identifying threats across the scales, from global to
local.

Technological Challenges
The first step toward developing sustainable

solutions for protecting freshwater resources entails
the monitoring of groundwater resources. Currently,
sites are monitored using Geographical Information
System (GIS) to locate and calculate proximity to
identified sources. However, contaminants
demonstrate significant spatio-temporal variability;
in addition, contaminants’ plumes change over time
because of natural processes and climatic
perturbations. These limitations lead to sparse and
uncertain datasets for the risk assessment. Even
so, it is not possible to monitor every location
because sampling is expensive. Therefore, we aim
to develop a new multi-scale monitoring framework
using smart data analytics.

Figure 1: The Trinity and Ogallala Aquifers are major
groundwater resources in Texas. Several studies have
reported high levels of nitrate in these aquifers. The Hurst
exponent of nitrate in both aquifers at fine, intermediate,
and coarse scales highlights different physical controls of
nitrate contamination (Dwivedi and Mohanty, 2016). The
Hurst exponent ranges from 0 to 1. H close to 0, 0.50, and
1 shows anti-persistence, random behavior, and
persistence, respectively.

Research
Recent studies have indicated that California is

a hub for various contaminants, such as nitrate,
chromium, and certain types of carcinogens. To
advance the current monitoring approach to include
a multi-scale treatment of available datasets and
evaluate the impact of new information using data
science and machine learning, we propose the
following steps:
• Develop a database for different contaminants

by leveraging the efforts of various agencies in
California;

• Develop an adaptive learning framework
combining point sources of information with
hydrology and climate datasets (e.g., gridded
reconstruction, process understanding,
information [entropy] theory);

• Identify important factors using machine learning
tools leading to contamination; and

• Find time-varying hot spots of contamination to
design targeted monitoring locations.

Ultimately, we expect to reduce the cost of
sampling without losing any significant information.
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